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Abstract

We consider a relation between discrete breathers (DBs) and nonlinear normal modes in some nonlinear monoatomic

chains. The dependence of the breathers’ stability on the strength of interparticle interaction in the K4 chain (the chain with

uniform on-site and intersite potentials of the fourth order) is investigated. A general method for constructing DBs which

provides the pair synchronization between the individual particles’ vibrations is discussed. Many-frequency breathers as

DBs of a new type and quasibreathers [introduced in Physical Review E 74 (2006) 036608] are analyzed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Over two last decades, discrete breathers (DBs) (intrinsic localized modes) have attached enormous
attention in many areas of physics. They represent spatially localized and time periodic excitations in
nonlinear Hamiltonian lattices. Different aspects of these dynamical objects were analyzed in various physical
systems by mathematical, numerical and experimental methods (see review papers [1–5] and references
therein). Note that DBs were studied in microscopic systems (antiferromagnetic spin–lattices [6],
Bose–Einstein condensates [7,8] etc.), in mesoscopic systems (arrays of Josephson junctions [9,10],
micromechanical cantilever arrays [11,12], etc.) and even in some macroscopic lattices, such as electrical
transmission lines [13]. A possible role of DBs in some biological processes, especially, in the DNA molecule
and motor proteins are also widely discussed in the literature [14–17]. A great number of papers were devoted
to study of the moving breathers (see Refs. [18–23] and many other works cited in Refs. [1–4]). Recently, some
new types of DBs have been investigated by different authors in 1D, 2D and 3D structures [5]. For example, let
us refer to the wandering breathers in weakly coupled nonlinear chains [24].

Rigorous existence proofs of DBs as strictly time periodic objects in networks of weakly coupled
anharmonic oscillators can be found in Refs. [1–4]. In Ref. [25], some physical arguments for the possibility of
energy localization in uniform nonlinear lattices were presented by Ovchinnikov many years before the
conventional definition of the DBs was introduced.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Several numerical schemes for obtaining DBs with high precision were developed in Refs. [26,27] (see also
Refs. [3,4]).

Actually, the possibility of existence of DBs as strictly time-periodic entities is not trivial because, as a
consequence of their spatial localization, individual particles vibrate with essentially different amplitudes but
with the same frequency.

In Ref. [28], we have analyzed some localized dynamical objects which are considered in the literature as
DBs and found that they are not strictly time-periodic entities: there are slight deviations in the frequencies of
the individual particles. Such objects we call quasibreathers.1 Moreover, it is possible to ascribe some
numerical characteristics (for example, the mean square deviation of the frequencies of individual particles) to
a given quasibreather which determine a degree of its nearness to an exact breather.

In contrast to the exact breathers, quasibreathers seem to be more adequate dynamical objects because the
former are practically impossible to create in any physical experiments.

In some rare cases, exact DBs can be constructed numerically in terms of nonlinear normal modes (NMs) as
introduced by Rosenberg in Ref. [30]. In Ref. [28] we have proceeded in such a way for the K4 chain
(monoatomic chain with uniform on-site and intersite potentials of the fourth order). Some analytical results
on the existence and stability of the DBs can be obtained for this chain. In Ref. [28], we have analyzed
the stability of the symmetric breather (Sievers–Takeno mode) as a function of the relative strength (b) of the
intersite potential with respect to the on-site potential. In the present paper, we extend this analysis to the
breathers of some other types in the K4 chain and in the chain of the Duffing oscillators with cubic coupling.
In both cases, the concept of nonlinear normal modes is used for DBs’ constructing in Section 2.

On the other hand, it is well known that nonlinear normal modes cannot exist for a majority of the
N-particle mechanical systems. Indeed, the vibrational regime associated with a nonlinear normal mode must
satisfy a very hard condition: the displacement of every particle at any instant t is proportional to the
displacement of a given, arbitrarily chosen particle. From this condition, it follows that all the particles of the
mechanical system vibrate with identical frequencies.

However, the above condition is not necessary for DBs’ existence. For this purpose, it is sufficient that the
evolution of displacements of all the particles are described by time-periodic functions with the same frequency
(without their proportionality at any instant).

Such more soft conditions can be satisfied by the pair synchronization method developed in Refs. [31,32]. It
represents an iterative procedure for synchronization of each pairs of adjacent particles. The pair
synchronization method (PS method) can be applied to construct breather solutions to dynamical equations
for arbitrary nonlinear Hamiltonian lattices, but we prefer to illustrate it with the chain of the linear coupled
Duffing oscillators (Section 3).

With the aid of this method, we can construct DBs even for sufficiently strong interparticle interactions. The
stability of the obtained breathers can be analyzed by the Floquet method.

In Section 4, we consider DBs of a new type which we call ‘‘many-frequency’’ breathers. Being strictly time-
periodic, they differ from the conventional DBs by the following property: the particles in the many-frequency
breather vibrate with different but commensurate frequencies. A possibility of the existence of such dynamical
objects has been slightly mentioned in [1] in connection with the construction of multibreathers, but we are not
aware of any detailed discussion about many-frequency DBs. Moreover, we think that many-frequency
breathers could not be considered as a special case of the multibreathers. Indeed, the main property of the
latter is that several particles in the breather vibration possess significant amplitudes. These amplitudes can be
obtained in the so-called anticontinuous limit by fixing the appropriate coding sequence which implies that
several particles have been excited when the interparticle interaction is absent (for more detail see papers [1,3]).

We discuss the many-frequency breathers for the linear coupled Duffing oscillators, where nonlinear normal
modes do not exist, as well as for the K4 chain and for the chain of Duffing oscillators with cubic coupling in
which nonlinear normal modes do exist. The matter of fact is that, in spite of existence of nonlinear normal
modes in the latter systems, the many-frequency breathers do not represent modes of this type.
1We distinguish between quasibreathers and quasiperiodic breathers (see, for example, Ref. [29]) for which several incommensurate

frequencies with significant amplitudes are presented in the Fourier spectrum.
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In Conclusion, we sum the above results and consider some perspectives for studying stationary DBs and
quasibreathers which appear when we do not achieve the strict synchronization in vibrations of all the
individual particles.

It has been already mentioned that the concepts of quasibreathers and many-frequency breathers, as well as
the pair synchronization method are valid (at least, in principle!) for arbitrary nonlinear Hamiltonian lattices.
Nevertheless, we will demonstrate them using the following simple mechanical models.
1.
 The chain of linear coupled hard Duffing oscillators (LD model):

€xi þ xi þ x3
i ¼ b½xiþ1 � 2xi þ xi�1�. (1)
2.
 The chain of the hard Duffing oscillators with cubic coupling (CD model):

€xi þ xi þ x3
i ¼ b½ðxiþ1 � xiÞ

3
� ðxi � xi�1Þ

3
�. (2)
3.
 The K4 chain:

€xi þ x3
i ¼ b½ðxiþ1 � xiÞ

3
� ðxi � xi�1Þ

3
�. (3)

The periodic boundary conditions

xNþ1ðtÞ ¼ x1ðtÞ; x0ðtÞ ¼ xNðtÞ (4)

are supposed to be fulfilled for all the above listed dynamical equations (1)–(3).

Note that models (1)–(3) can be applied to studying breathers in certain mechanical systems, in particular,
Eq. (1) were used in Ref. [12] for modeling breather-like dynamical objects in cantilever arrays. We consider
Eqs. (1)–(3) as abstract dynamical models, but discussing the methods for their solving and the appropriate
numerical results, we will treat xiðtÞ as displacements of the individual particles (from their equilibrium
positions) in a certain ‘‘monoatomic chain’’.
2. Localized nonlinear normal modes as DBs

2.1. DBs in the K4 chain

First of all, let us note that models similar to the K4 chain (3) have been considered in the papers
[26,27,33–36], but we analyze this chain with a different purpose and in a different manner. A comparison of
our results with those obtained in the above papers can be found in Ref. [28].

Below we reproduce some results and methods from our paper [28] which are necessary for the further
discussion.

According to the definition of the similar nonlinear normal modes introduced by Rosenberg in Ref. [30],
displacements xiðtÞ of all the particles of a given mechanical system are proportional to the displacement x1ðtÞ

of the first particle for any instant t:

xiðtÞ ¼ kix1ðtÞ; i ¼ 1::N ðk1 ¼ 1Þ. (5)

Substituting expressions (5) into equation of motion (3) for the K4 chain, we obtain N differential equations
with respect to the same function x1ðtÞ. Demanding all these equations to be identical, we find (N � 1)
nonlinear algebraic equations for (N � 1) coefficients k2; k3; . . . ; kN from Eq. (5) and one differential equation
for x1ðtÞ which is called governing equation. The set k ¼ fk1; k2; k3; . . . ; kNg determines the shape of nonlinear
normal mode or its spatial profile.

The above-mentioned algebraic equations for the K4 chain, can be written as follows:

k3
i þ b½ðkiþ1 � kiÞ

3
� ðki � ki�1Þ

3
� ¼ kif1þ b½ðk2 � 1Þ3 � ð1� kN Þ

3
�g ði ¼ 2::NÞ, (6)
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Table 1

Spatial profiles f. . . ; x3; x2; x1; x0; x1; x2; x3; . . .g of symmetric breathers in the K4-chain with N ¼ 5; 9; 15 particles for b ¼ 0:3

N ¼ 5 N ¼ 9 N ¼ 15

x0 1 1 1

x1 �0.2992883116 �0.2992883120 �0.2992883120

x2 0.0035993414 0.0035993477 0.0035993477

x3 �0:6040174714� 10�8 �0:6040174714� 10�8

x4 * *

x5 *

x6 *

x7 *
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while the governing equations is

€x1 þ p2ðkÞ � x3
1 ¼ 0. (7)

There are some localized and delocalized nonlinear normal modes among the solution of Eqs. (6).
Obviously, the former represent DBs.

Below we discuss some specific types of DBs in the K4 chain determined by the following spatial profiles
k ¼ fk1; k2; k3; . . . ; kNg:
(i)
 symmetric breather (Sievers–Takeno mode)

k ¼ f. . . ; x3; x2; x1; 1; x1; x2; x3; . . .g; (8)
(ii)
 antisymmetric breather (Page mode)

k ¼ f. . . ;�x3;�x2;�x1;�1; 1; x1; x2; x3; . . .g; (9)
(iii)
 symmetric multibreather

k ¼ f. . . ; x3; x2; x1; 1; 1; x1; x2; x3; . . .g. (10)
Here xi must be found as solutions to algebraic equations (6). [Note that by substituting these profiles into
system (6) we reduce its dimension.]

We use the mathematical package MAPLE for solving Eqs. (6) with specification Digits ¼ 20 and,
therefore, the spatial profile of the DBs which are presented below turn out to be practically exact.

Note that Eqs. (6) possess many different solutions. Taking into account that we search for DBs which
represent spatially localized dynamical objects, some restrictions have been imposed on the variables xi

(i ¼ 1; 2; 3; . . .) from Eqs. (8)–(10): jxiþ1jojxijo1. These relations reduce considerably the number of
admissible solutions of Eqs. (6).

Due to the periodic boundary conditions (4), we can imagine that our monoatomic chain represents
a ring with N particles. Subsequently increasing N, we find the DB of a given type for more and more long
chains.

2.1.1. Symmetric breathers (Sievers– Takeno modes)

Some results of our calculations for the symmetric breather (8) are presented in Table 1. Com-
paring the profiles for the chain with N ¼ 3; 5; 7; 9; 11; etc. particles, one can reveal that the results for
N ¼ 15 are practically exact and the further increase of N does not affect the spatial profile of the
breather solution. Indeed, the considered breather demonstrates such a strong localization that the
displacement of the particles which are more than three lattice spacings distance from the breather center are
utterly insignificant (they do not exceed 10�20 and we denote them in our tables by an asterisk). Therefore, we
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conclude that the profile for N ¼ 19 (and even for N ¼ 5) can be considered as the profile for the infinite chain
(N ¼ 1).2

The time dependence of the breather solution is determined by the governing equation (7). For the
symmetric breather (8), in Ref. [28], we have found the following values of p2ðNÞ for different N (b ¼ 0:3):

p2ð3Þ ¼ 2:2983734518,

p2ð5Þ ¼ 2:3160362290,

p2ð7Þ ¼ 2:3160362301,

p2ð9Þ ¼ 2:3160362301.

For initial conditions

x1ð0Þ ¼ A0; _x1ð0Þ ¼ 0 (11)

the solution to Eq. (7) (see, for example, Ref. [33]) reads

x1ðtÞ ¼ A0cnðot; 1ffiffi
2
p Þ, (12)

where the frequency o is the linear function of the amplitude A0:

o ¼ pA0. (13)

Here cnðot;mÞ is the Jacobi elliptic function with the modulus m equal to 1ffiffi
2
p . Note that such a value of the

modulus is needed to eliminate the linear term, because, in the general case, the function cnðt;mÞ satisfies
the equation3:

cn00ðt;mÞ þ ½1� 2m2�cnðt;mÞ þ 2m2cn3ðt;mÞ ¼ 0.

Introducing the new time and space variables t, xðtÞ according to relations

t ¼
t

pA0

; x1ðtÞ ¼ A0xðtÞ, (14)

we obtain from Eqs. (7) and (11) the following Cauchy problem for the function xðtÞ4:

x00 þ x3ðtÞ ¼ 0; xð0Þ ¼ 1; x0ð0Þ ¼ 0 (15)

with the solution

xðtÞ ¼ cnðt; 1ffiffi
2
p Þ. (16)

In conclusion, it is worth emphasizing that the spatial profile provided in Table 1 turns out to be universal

for the breathers with different amplitudes A0 (it does not depend on the amplitude), while the breather
frequency depends on A0 linearly (o ¼ pA0).

Now let us discuss the stability of the symmetric breather in the K4 chain following the paper [28].
In accordance with the standard prescription of the linear stability analysis, we linearize the nonlinear

equations of motion (3) in the vicinity of the periodic regime described by our breather and investigate the
resulting linear differential equations with time-periodic coefficients.

Let

xbðtÞ ¼ fk1x1ðtÞ; k2x1ðtÞ; . . . ; kNx1ðtÞg (17)

be the exact breather solution determined by Eqs. (5)–(7) and

dðtÞ ¼ fd1ðtÞ; d2ðtÞ; . . . ; dN ðtÞg (18)
2The breather space localization is usually characterized by an exponential decay of the vibrational amplitudes of the peripheral

particles, but in the K4 chain we have the superexponential decay in terms of the paper [36].
3This equation can be obtained using the elementary formulas for the Jacobi elliptic functions (see, for example, Ref. [37]).
4We denote the differentiation with respect to t by dot, while that with respect to t by prime.
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be an infinitesimal vector describing a deviation from xbðtÞ. Then we substitute the vector xðtÞ ¼ xbðtÞ þ dðtÞ
into Eqs. (3) and linearize these equations with respect to dj (j ¼ 1::N).

As a result of this procedure, we obtain the linearized system

€dðtÞ ¼ �3x2
1ðtÞAdðtÞ, (19)

where A is a symmetric matrix with time-independent coefficients.
The specific structure of the linearized system (19) allows us to make an essential step for simplifying the

further stability analysis. Indeed, let us pass from the vector variable dðtÞ to a new variable ~dðtÞ whose
definition involves a time-independent orthogonal matrix S:

dðtÞ ¼ S~dðtÞ. (20)

Substituting d in such form into Eq. (19) and multiplying this equation by the matrix ~S from the left ( ~S ¼ S�1

is the transpose of S), we obtain5

€~d ¼ �3x2
1ðtÞð

~SASÞ~d. (21)

On the other hand, the matrix A is symmetric6 and, therefore, there exists an orthogonal matrix S

transforming the matrix A to a fully diagonal form Adiag:

~SAS ¼ Adiag. (22)

If we find such matrix S, the linearized system (21) decomposes into N independent differential equations

€~dj þ 3x2
1ðtÞlj

~dj ¼ 0; j ¼ 1::N, (23)

where lj are the eigenvalues of the matrix A. Moreover, solving the eigenproblem Ay ¼ ly for the matrix A,
we obtain not only lj for Eq. (23), but also the explicit form of the matrix S from Eq. (20): its columns turn out
to be the eigenvectors yj (j ¼ 1::N) of the matrix A.

In Eq. (23), each equation represents the linear differential equation with time-periodic coefficient. The most
well-known differential equation of this type is the Mathieu equation

€zþ ½a� 2q cosð2tÞ�z ¼ 0. (24)

The (a� q) plane for this equation splits into regions of stable and unstable motion [37]. If parameters (a,q)
fall into a stable region, zðtÞ that is small at the initial instant t ¼ 0 continues to be small for all times t40
(the case of Lyapunov stability). Oppositely, if zð0Þ is a small value (even infinitesimal), zðtÞ will begin
to grow rapidly for t40 (Lyapunov instability). Actually, we must analyze the stability of the zero solution
of Eq. (24).

We can obtain some estimations for the stability regions of Eqs. (23) by reducing these equations to the
Mathieu from in a certain approximation [28], but it is possible to investigate the stability of our breather
rigorously. Indeed, substituting the exact breather solution from Eq. (12) into Eqs. (23), we transform them to
the Lamé equation in the Jacobi form [38]:

z00j þ Ljcn2ðt; 1ffiffi
2
p ÞzjðtÞ ¼ 0. (25)

Here

zjðtÞ ¼ ~dj

t
pA0

� �
; Lj ¼

3lj

p2
; t ¼ pA0t (26)

(A0 is the amplitude of the central breather’s particle).
5The tildes in ~d and ~S are used in different sense: ~d is the new vector variable with respect to the old variable d, while ~S is the transpose

of S.
6This property is a consequence of the fact that the linearized system (19) can be written in the form €d ¼ JðtÞ d via the Jacobi matrix JðtÞ

which is constructed from the second partial derivatives of the total potential energy of the considered chain.
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Table 2

Eigenvalues of the matrix A of the linearized dynamical system for the K4 chain with different number of particles N (b ¼ 0:3)

N ¼ 3 N ¼ 5

l1 ¼ 2:298373452 L1 ¼ 3 l1 ¼ 2:316036234 L1 ¼ 3

l2 ¼ 0:5880160166 L2 ¼ 0:7675201995 l2 ¼ 0:6248090298 L2 ¼ 0:8093254611
l3 ¼ 0:2934494449 L3 ¼ 0:3830310231 l3 ¼ 0:3226215801 L3 ¼ 0:4178970630

l4 ¼ 0:02626701223 L4 ¼ 0:03402409500
l5 ¼ 0:02530830363 L5 ¼ 0:03278226390

N ¼ 7 N ¼ 9

l1 ¼ 2:316036234 L1 ¼ 3 l1 ¼ 2:316036234 L1 ¼ 3

l2 ¼ 0:6248090398 L2 ¼ 0:8093254740 l2 ¼ 0:6248090398 L2 ¼ 0:8093254740
l3 ¼ 0:3226216094 L3 ¼ 0:4178971017 l3 ¼ 0:3226216094 L3 ¼ 0:4178971017
l4 ¼ 0:02627089232 L4 ¼ 0:03402912093 l4 ¼ 0:02627089232 L4 ¼ 0:03402912093
l5 ¼ 0:02531216336 L5 ¼ 0:03278726346 l5 ¼ 0:02531216336 L5 ¼ 0:03278726346

l6 ¼ 0:3886030305� 10�5 L6 ¼ 0:5033639268� 10�5 l6 ¼ 0:3886030305� 10�5 L6 ¼ 0:5033639268� 10�5

l7 ¼ 0:3886011392� 10�5 L7 ¼ 0:5033614770� 10�5 l7 ¼ 0:3886011392� 10�5 L7 ¼ 0:5033614770� 10�5

l8 ¼ 0:1094511318� 10�16 L8 ¼ 0:1417738596� 10�16

l9 ¼ 0:1094511318� 10�16 L9 ¼ 0:1417738596� 10�16
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Thus, the stability analysis of the symmetric breather in the K4 chain is reduced to investigation of the
stability of the zero solution of the equation

z00 þ L2cn2ðt; 1ffiffi
2
p ÞzðtÞ ¼ 0 (27)

for different values of the parameter L which are connected with the eigenvalues lj of the matrix A from
Eq. (19). In the following, we will call Eq. (27) the basic equation.

The standard Floquet analysis of the basic equation (27) reveals that its zero solution is stable for 0oLp1,
3pLp6, etc., while for 1olo3, 6oLo10, etc. this solution is unstable. The boundary values of the
parameter L (L ¼ 0; 1; 3; 6; 10; . . .) for which the character of stability is changed correspond to L ¼ 1

2
nðnþ 1Þ

with n ¼ 0; 1; 2; 3; 4; . . . : These boundary values, separating stable and unstable regions of L, correspond to the
periodic solutions7 of the Lamé equation (27) [38].

The above mentioned properties of the Lamé equation allow us to analyze the breathers’ stability with the
aid of the eigenvalues lj of the matrix A of the linearized system (19), because of the one-to-one
correspondence (26) between lj and Lj entering Eq. (25).

On the other hand, the elements of the matrix A depend on the parameter b from Eq. (3) which
determines the relative strength of the intersite interaction with respect to the on-site interaction.
As a consequence, the eigenvalues lj ¼ ljðbÞ of the matrix A are functions of the b and we have
calculated them using the appropriate numeric procedure8 for sufficiently dense set of points within the
interval 0obp1.

In Table 2, we present ljðbÞ and LjðbÞ for the K4 chain with N ¼ 3; 5; 7; 9 particles for b ¼ 0:3. From this
table, one can see that several first eigenvalues possess significant values and tend to the certain limits when N

increases, while the additional lj (appearing because of this increase) are very small.
In Fig. 1, we depict the function LjðbÞ on the background of the stability diagram of the basic equation (27)

(stable region is white, unstable is gray). Naturally, LjðbÞ of the more significant values are only depicted in
Fig. 1 [the rest LjðbÞ are small but positive numbers]. One can see that all LjðbÞ fall into the interval
0oLjðbÞp3 which consists of the first region of stability (0oLp1) and the first region of instability
(1oLo3).
7The same property takes place for the boundaries of stable and unstable regions for the Mathieu equation.
8We have applied facilities of MAPLE for this purpose.
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Fig. 1. The parameters Lj from the basic equation (27) as functions of the b for the symmetric breathers in the K4 chain.

Table 3

Spatial profiles f. . . ;�x3;�x2;�x1;�x0; x0; x1; x2; x3; . . .g of the antisymmetric breathers in the K4 chain with N ¼ 4; 6; 10 particles for

b ¼ 0:3

N ¼ 4 N ¼ 6 N ¼ 10

x0 1 1 1

x1 �0.1715728752 �0:1657879024 �0:1657879024
x2 0:4795767441� 10�3 0:4795766628� 10�3

x3 �0:1150827549� 10�10

x4 *
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The first eigenvalue l1ðbÞ represents a special case, because corresponding to it L1ðbÞ ¼ 3 falls (for any value
of b!) exactly onto the boundary between the first region of instability and the second region of stability.
Therefore, a strictly time-periodic solution of the basic equation (27) corresponds to this value of L.

It can be verified that the eigenvector V1 associated with l1ðbÞ is proportional to the spatial profile of our
symmetric breather (it describes only small change of the breather amplitude). Obviously, such disturbance
along the breather solution is not connected with its stability properties and only disturbances in the
transversal direction are meaningful.

It is clear from Fig. 1 that for bpbc ¼ 0:554 . . . all Lj fall into the first stability region 0oLp1 and, as a
consequence, our symmetric breather is stable for such strength of interparticle interaction. On the other hand, one
value of the parameter L, namely, L2ðbÞ enters the first unstable region 1oLo3 for b4bc and the considered
breather loses its stability. Thus, the symmetric breather (8) in the K4 chain turns out to be a stable dynamical object
only when the interparticle interaction is not too large with respect to the on-site interaction (bpbc ¼ 0:554 . . .).
Below, we will show that the fully opposite situation takes place for the antisymmetric breather (9).

2.1.2. Antisymmetric breathers (Page modes)

Now, let us consider the antisymmetric breather (9) in the K4 chain. All the above discussed methods
for investigating the problems of existence and stability of the symmetric breather (8) are also valid in the
present case.
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Table 4

The values of the parameter L from Eq. (27) for the antisymmetric breathers in the K4 chain with different number of particles (N)

N ¼ 4 N ¼ 6

L1 ¼ 3 L1 ¼ 3

L2 ¼ 1:174380299 L2 ¼ 1:174158240
L3 ¼ 0:2903225809 L3 ¼ 0:2706091431
L4 ¼ 0:2032288097 L4 ¼ 0:2054306666

L5 ¼ 0:2705947721� 10�2

L6 ¼ 0:2699701623� 10�2

N ¼ 8 N ¼ 10

L1 ¼ 3 L1 ¼ 3

L2 ¼ 1:174158240 L2 ¼ 1:174158240
L3 ¼ 0:2706091431 L3 ¼ 0:2706091431
L4 ¼ 0:2054306666 L4 ¼ 0:2054306666

L5 ¼ 0:2705931835� 10�2 L5 ¼ 0:2705931835� 10�2

L6 ¼ 0:2699703891� 10�2 L6 ¼ 0:2699703891� 10�2

L7 ¼ 0:2269482819� 10�8 L7 ¼ 0:2269482817� 10�8

L8 ¼ 0:2269482814� 10�8 L8 ¼ 0:2269482782� 10�8

L9�10
�26

L10�10
�26

Fig. 2. The parameters Lj from the basic equation (27) as functions of the b for the antisymmetric breathers in the K4 chain.
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The spatial profiles for the antisymmetric breather (9) for the K4 chain with different number of particles
(N) and b ¼ 0:3 are presented in Table 3. The eigenvalues of the matrix A and the corresponding values of the
parameter L from the basic equation (27) are listed for some values of N in Table 4.

Finally the significant values of LjðbÞ are depicted in Fig. 2 as functions of the parameter b from the
dynamical equations (3) of the K4 model.

Comparing Fig. 1 for the symmetric breather and Fig. 2 for the antisymmetric breather reveals some
interesting features of these dynamical objects. Indeed, the antisymmetric breather, unlike the symmetric one,



ARTICLE IN PRESS

Table 5

Spatial profiles fx4; x3; x2; x1; x0; x0; x1; x2; x3; x4g and the parameters Lj from Eq. (27) for the symmetric multibreather in the K4 chain (3)

with N ¼ 10 particles for different strength of interparticle interaction (b)

b ¼ 0:1 b ¼ 0:2 b ¼ 0:206

x0 1 1 1

x1 �0:1272884566 �0:4299888161 �0:5220782231
x2 0:1811663713� 10�3 0.01080951473 0.0188956596

x3 �0:52� 10�12 �0:1593990593� 10�6 �0:81� 10�6

x4 * * 0:62� 10�19

L1 3 3 3

L2 0.3378517129 0.8708501976 0.985358

L3 0:4210123582� 10�2 0.06780972327 0.094902

L4 0:861� 10�8 0:4420920417� 10�4 0.001277

L5 �10�25 0:98� 10�14 0:23� 10�12
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is unstable for small values of b. This fact can be seen from Fig. 2 because L2ðbÞ fall into the first region of
unstable motion up to the same critical value b ¼ bc ¼ 0:554 . . . : All other values LjðbÞ (j42) are in the first
region of stable motion (the special case L1ðbÞ � 3 we have already discussed in connection with studying the
symmetric breather). The most intriguing point is that the critical value bc for losing the stability of the
symmetric breather when b increase from zero and that for acquiring the stability of the antisymmetric
breather coincide with each other.

Thus the main result can be described as follows. For bobc ¼ 0:554 . . . the symmetric breather
(Sievers–Takeno mode) is stable, while the antisymmetric breather (Page mode) is unstable. For b4bc, the
picture is opposite: the symmetric breather is unstable, while the antisymmetric breather is stable.

From the above discussion, we conclude that the symmetric breather is stable when interparticle interaction
is weak relative to the on-site interaction, while the antisymmetric breather is stable when this interaction
is strong.

2.1.3. Symmetric multibreathers

We have just considered two types of breathers which are frequently discussed in the literature—
Sievers–Takeno and Page modes. However, other types of DBs can also exist in the K4 chain. They represent
localized nonlinear normal modes whose spatial profiles are determined by Eqs. (6). As an example, we
consider the symmetric multibreather (10) with two particles in its ‘‘core’’ (the coding sequence
f0; . . . ; 0; 1; 1; 0; . . . ; 0g corresponds to it in the anticontinuous limit). The above discussed methods for DB
investigation in the K4 chain are valid in this case, and we present here only some final results.

The spatial profiles of the considered multibreather for several values of the strength of the interparticle
interaction (b) for the K4 chain with N ¼ 10 particles can be seen in Table 5.

The breathers presented in this table possess very strong localization. Their stability is characterized by the
parameters Lj from the basic equation (27). The value L1 ¼ 3, as well as for all the above cases, corresponds to
an infinitesimal disturbance along the breather and, therefore, does not affect its stability.

On the other hand, L2 tends to the boundary (L ¼ 1) of the first stable region of the basic equation (27) with
increasing b, while all the other Lj continue to be inside this stable region. Such behavior of LjðbÞ can be seen
more explicitly from Fig. 3, which is depicted similarly to Figs. 1 and 2.

From this figure, we can conclude that the symmetric multibreather (10) possesses the lesser threshold of
stability with respect to the strength of the interparticle interaction (b) in comparison with the simple symmetric
breather (8). Indeed, the former loses stability at b ¼ 0:206::, while the latter loses the stability at bc ¼ 0:554 . . . :

2.2. DBs in the chain of the Duffing oscillators with cubic coupling

We consider the dynamical model described by Eqs. (2). These equations differ from those of the K4 chain
by the additional linear term (xi) in their left-hand side.
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Fig. 3. LjðbÞ as functions of the strength of interparticle interaction b for the symmetric multibreather (10) in the K4 chain (3).
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Assuming xiðtÞ ¼ kix1ðtÞ, one can reveal that nonlinear normal modes exist in this model as well as in the K4

chain. Moreover, the algebraic equations (6) for determining the spacial profiles k ¼ fki j i ¼ 1; . . . ;Ng of
NNMs are identical with those for the K4 chain. Thus, the spatial profiles of DBs in the chain of the Duffing
oscillators with cubic coupling (2) fully coincide with those in the K4 chain (3).

The governing equation which determines the time-evolution of the DBs reads €x1 þ x1 þ p2ðkÞx3
1 ¼ 0 with

p2ðkÞ being equal to that in the governing equation for the K4 chain. For the symmetric breather k2 ¼ kN and
one can obtain [28]:

p2ðkÞ ¼ 1þ 2bð1� k2Þ
3. (28)

Actually p2ðkÞ depends on the number of particles (N) in the chain since all ki (i ¼ 1::N) depend on each other
and, therefore, also on N.

Although the breathers for the CD model possess the identical profiles with those of the K4 chain, their
stability properties are different. Let us consider this question in some detail.

As was already emphasized, the stability of the DBs in the K4 chain does not depend on their amplitudes.
Indeed, L ¼ LðbÞ from the basic equation (27) is independent of the breather’s amplitude A0 and the stability
diagram of its zero solution in the L2A0 plane looks as depicted in Fig. 4.

Therefore, to any L ¼ LðbÞ, determined by a certain eigenvalues lj of the matrix A from Eq. (19),
corresponds a horizontal line which fully belongs to a stable or unstable strip in Fig. 4.

It is easy to understand that the linearized system in the vicinity of a given DB for the CD model (2) reads

€d ¼ ½�I � 3x2
1ðtÞA�d, (29)

where A is a matrix identical to that for the K4 chain (see Eq. (19)). Similarly to the latter case, the specific
structure of Eq. (29) allows us to find an orthogonal transformation which splits this system of linear
differential equations into independent equations

€~dj þ ½1þ Lj � x
2
1ðtÞ�

~dj ¼ 0, (30)

where Lj ¼ 3lj=p2ðkÞ, while lj are eigenvalues of the matrix A.
The stability diagram in L2A0 plane for zero solution of each Eq. (30) is depicted in Fig. 5. It differs from

that of the K4 chain (see Fig. 4) for small breather amplitudes.
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Fig. 5. Stability diagram for the CD model (see Eq. (30)).

Fig. 4. Stability diagram for the K4 chain (see Eq. (19)).
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A given breather in the CD model will be stable, if all Lj for the fixed value of A0 � pðkÞ fall into the stable
regions shown in Fig. 5 by the gray color.

From the above discussion, we conclude that, unlike the K4 chain, the stability of the DBs in the CD model
do depend on their amplitudes A0.

3. Pair synchronization method for constructing DBs

Up to this point, we have used the concept of nonlinear normal modes for constructing DBs in the K4 chain
(3) and CD model (2). However, NNMs can only exist in the N-particle mechanical systems with very specific
types of interparticle interactions. On the other hand, DBs can exist in vast classes of nonlinear lattices, and
some numerical methods were developed for their obtaining with high precision (see Refs. [4,5,27]).
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Fig. 6. Numeration of the particles and their initial velocities for the symmetric breather in the chain with N ¼ 7.
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In Refs. [31,32] we have presented a new method for this purpose which has an explicit physical
interpretation. We call it the method of pair synchronization. This method can be used for constructing DBs in
different nonlinear Hamiltonian lattices, but we prefer to demonstrate it with the simple case of the chain of
linear coupled hard Duffing oscillators (1).

3.1. Algorithm of the pair synchronization method

We will consider the simple symmetric breathers in the chains (1) with N ¼ 3; 5; 7; 9; . . . particles. Because of
the periodic boundary conditions (4), we can imagine that our chain represents a ring (the equilibrium state of
the chain with N ¼ 7 is depicted in Fig. 6).

We start the exposition of our method with the case of N ¼ 3. Let the first particle be the central particle of
the breather. Therefore, its amplitude is greater than the amplitudes of the peripheral particles, i.e.
jx1ðtÞj4jx2ðtÞj, jx3ðtÞj. Moreover, the relation x2ðtÞ ¼ x3ðtÞ must hold as far as we search for the symmetric
breather. To construct such a breather, the following initial conditions can be used for integrating the
dynamical equations (1):

x3ð0Þ ¼ x1ð0Þ ¼ x2ð0Þ ¼ 0; _x1ð0Þ ¼ a1; _x2ð0Þ ¼ a2; _x3ð0Þ ¼ a3.

Thus, we suppose that all particles of the chain are in their equilibrium positions at the initial instant, but
possess certain velocities which we denote by ai (i ¼ 1::N).

There are two parameters upon which our breathers depend, namely, b, entering the dynamical equations
(1), and the initial velocity a1 of the central breather’s particle. Choosing some reasonable values of these
parameters and supposing a2 ¼ 0, we integrate equations (1) for N ¼ 3 over time interval containing, at least,
one zero of the function x1ðtÞ and one zero of x2ðtÞ (see Fig. 7a). Now let us change the initial velocity
_x2ð0Þ ¼ a2 of the second particle with the aim of coincidence of the first zero of x2ðtÞ with that of x1ðtÞ. In other
words, we try to synchronize the oscillations of the first particle [x1ðtÞ] with those of two neighboring particles
[x2ðtÞ ¼ x3ðtÞ].

Different numerical methods can be applied for such purpose, for example, the ‘‘shooting’’ method using
the idea of dichotomy. Zeros of the functions x1ðtÞ and x2ðtÞ can be found by the Newton–Raphson method or
by some other well-known numerical methods.

As a consequence of the above synchronization, all the zeros of the functions x1ðtÞ and x2ðtÞ coincide with
each other and we obtain the symmetric three-particle breather depicted in Fig. 7b. The synchronization of the
vibrations of the first and second particles we call the S½1; 2� procedure. A similar procedure for
synchronization of the vibrations of the i-th and j-th particles will be called the S½i; j� procedure.

In general case, the algorithm of the discussed method for arbitrary N can be described as follows. We
synchronize the vibrations of the particles 1 and 2 with the aid of the above discussed procedure S½1; 2�. Then
we synchronize the vibrations of the particles 2 and 3 with the aid of the procedure S½2; 3� and so on, up to the
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Table 6

The initial velocities and resulting amplitudes of the breather’s particles for the chain (1) with N ¼ 13, b ¼ 0:3

Initial velocities Amplitudes

8 0.0003916 0.000197

9 �0.0018250 0.001069

10 0.0076567 0.004485

11 �0.0317182 0.018581

12 0.1312208 0.076913

13 �0.5385204 0.317777

1 2 1.254160

2 �0.5385204 0.317777

3 0.1312208 0.076913

4 �0.0317182 0.018581

5 0.0076567 0.004485

6 �0.0018250 0.001069

7 0.0003916 0.000197

Fig. 7. Pair synchronization method for the chain (1) with N ¼ 3: (a) initial stage and (b) final stage.
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synchronization of the particles N � 1 and N:

fS½1; 2�;S½2; 3�;S½3; 4�; . . . ;S½N � 1;N�g. (31)

The sequence of the pair synchronization procedures (31) must be repeated several times, because
synchronization of each next pair of particles can lead to slight disturbance9 of the preceding pair of particles.

Thus the pair synchronization method represents an iterative process, which we continue up to attaining the
desirable level of accuracy. Our numerical calculations show that in many cases the method of pair
synchronization rapidly converges even for sufficiently large coupling between oscillators.

3.2. DBs in the chain of the Duffing oscillators with linear coupling

With the aid of the above described pair synchronization method, we have obtained some numerical results
for DBs in the chain of coupled Duffing oscillators (1) with different values of the coupling parameter b
9At least, for the case of the breather with strong localization.
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Fig. 8. Discrete breather for the chain (1) with N ¼ 13 particles: (a) time evolution xiðtÞ of the individual particles and (b) dependence of

the breather’s localization on the coupling parameter b.
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(0obo10). It occurs that in most cases breathers with such values of b are strongly localized and, therefore, to
construct them we can consider the chain (1) with sufficiently small numbers of particles N. In Table 6, we
present the symmetric DB for model (1) with N ¼ 13, b ¼ 0:3.

The first column of this table contains the numbers of the particles (the first particle is the central particle of
the breather). The initial velocities of all the particles are given in the second column (the initial displacements
are assumed to be zero), while the amplitudes Ai of vibrations of the particles are given in the third column
(Ai ¼ AN�iþ2 because our breather is symmetric). From Table 6, one can see that the amplitudes of the
particles which are the most distant from the breather’s center do not exceed 0.02% from the amplitude of the
central particle.

The time evolution of the above breather, which is determined by the functions x1ðtÞ;x2ðtÞ; . . . ; xNðtÞ, is
shown in Fig. 8a. Because the amplitudes An of the particles decrease rapidly with increasing their distance
from the breather center, we depict them in the logarithmic scale for different b in Fig. 8b. From this picture,
one can see the exponential decay of the amplitudes of the peripheral particles. The degree of the breather
spatial localization decreases with increasing b.

The convergence of the pair synchronization method depends essentially on the quality of the initial velocity
profile a ¼ fa1; a2; a3; . . . ; aNg from which we begin the calculations along with the algorithm of the method.
Some estimations for the initial profile ainit for the case of weak interparticle interactions (small value of b)
have been proposed in Ref. [31].

Naturally, starting from the small b, we can increase step by step the strength of the interparticle
interactions using the final velocity profile for a given b as the initial profile for the next value of b. We can also
use the velocity profile which was found for the chain with relatively small number (N) of the particles in the
chain as the initial profile for the chain with N þ 2 particles, etc. Finally, it is possible to change the sequence
of the pair synchronization procedures S½i; j� in the iterative cycle (31) for improving the convergence of the
considered method.

In any case, we can find DBs in the LD model (1) with sufficiently large values b (even for b\30). However,
the velocity profiles aðbÞ [as well as the spatial profiles] of the symmetric breathers tend with a good accuracy
to a certain limit vector alim, when b becomes larger than 15. Due to this reason, in Table 7, we present the
velocity breather profiles only up to b ¼ 10.

Some similar results for antisymmetric breathers in the LD model (1) are presented in Table 8. For large b
the delocalization of the breather vibrations takes place and the spatial profiles of antisymmetric breathers
tend to the p-mode f�1; 1;�1; 1;�1; 1; . . .g.

For studying the stability of the breathers in the LD chain, we can use the standard Floquet method. As an
example, in Fig. 9 we depict the Floquet multiplicators on the unit circle for two examples. From these picture,
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Table 8

Velocity profiles for antisymmetric breathers in the LD model (1) for different values of interparticle interaction ðbÞ

b ¼ 0:1 b ¼ 0:3 b ¼ 0:5 b ¼ 0:7 b ¼ 0:9 b ¼ 0:97

a5 0.01125942 0.122897 0.395655 0.8492010 1.439248 1.665248

a6 �0.1496424 �0.471428 �0.841867 �1.2648100 �1.686680 �1.821661

a1 2 2 2 2 2 2

a2 �2 �2 �2 �2 �2 �2

a3 0.1496424 0.471428 0.841867 1.2648100 1.686680 1.821661

a4 �0.01125942 �0.122897 �0.395655 �0.8492010 �1.439248 �1.665248

Fig. 9. The Floquet multiplicators for DBs in LD model (1) with b ¼ 0:3: (a) symmetric breather fN ¼ 7, a1 ¼ 2, a2 ¼ �0:538056,
a3 ¼ 0:129355, a4 ¼ �0:024052g and (b) antisymmetric breather fN ¼ 8, a1 ¼ 2, a2 ¼ �0:466790, a3 ¼ 0:101999, a4 ¼ �0:026418g.

Table 7

Velocity profiles for symmetric breathers in the LD model (1) for different values of interparticle interaction ðbÞ

b ¼ 0:5 b ¼ 1 b ¼ 3 b ¼ 6 b ¼ 10

a5 �0.1032882638 �0.2893006151 �0.4214517416 �0.4387945325 �0.4427417430

a6 0.3994420656 0.9193077069 1.203400713 1.235644985 1.242822155

a7 �1.010628378 �1.609666653 �1.781897026 �1.796848651 �1.800079430

a1 2 2 2 2 2

a2 �1.010628378 �1.609666653 �1.781897026 �1.796848651 �1.800079430

a3 0.3994420656 0.9193077069 1.203400713 1.235644985 1.242822155

a4 �0.1032882638 �0.2893006151 �0.4214517416 �0.4387945325 �0.4427417430

G.M. Chechin, G.S. Dzhelauhova / Journal of Sound and Vibration 322 (2009) 490–512 505
one can see that the symmetric breather with N ¼ 7, a1 ¼ 2, a2 ¼ �0:538056, a3 ¼ 0:129355, a4 ¼ �0:024052,
b ¼ 0:3 is stable, while the antisymmetric breather with N ¼ 8, a1 ¼ 2, a2 ¼ �0:466790, a3 ¼ 0:101999,
a4 ¼ �0:026418, b ¼ 0:3 is unstable.

3.3. Quasibreathers

Because of the spatial localization of a given breather, the different particles of the chain vibrate with
essentially different amplitudes. On the other hand, it is typical for nonlinear dynamics, that different
frequencies correspond to the particles vibrating with different amplitudes. Therefore, the natural question
arises: ‘‘How can such properties as spatial localization and strict time-periodicity coexist in breather
vibrations’’?

Using the pair synchronization method, we synchronize the vibrations of central particles with those
of the peripheral particles. In Ref. [31], we have demonstrated (with some additional approximation)
that this method leads to a very simple physical interpretation of the possibility of the exact breathers’
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existence. It turns out that constructing a strictly time-periodic breather, we actually demand
annihilation of the contributions with natural vibrational frequencies from all the peripheral particles to
the breather solution. This means the existence of some kind of dictatorship of the central particle
(in general, of the breather core) which ‘‘suppresses any individuality’’ of the peripheral particles
by above-mentioned annihilation. In other words, all terms of the exact breather solution with frequencies
different from the frequency of the central particle (which appear from the natural frequencies of the
peripheral particles) must necessarily go to zero. The breather core compels the peripheral particles to
vibrate with its own frequency. We also demonstrated, for the case of weakly coupled oscillatory chains,
that this compulsion leads to the exponential decay of the vibrational amplitudes of the peripheral
breather’s particles.

For every oscillatory chain considered in the present paper there exists a certain 1D family of DBs which
can be parameterized by the breather amplitude (the amplitude of the central particle or particles). To obtain
an exact breather, we must strictly tune the initial conditions onto the corresponding 1D manifold in the
multidimensional phase space—the space of all possible initial coordinates and velocities of all the particles of
the mechanical system. Obviously, this is impossible in any physical experiment. Therefore, we always deal
with a certain vicinity of the DB but not with the exact breather itself.

On the other hand, if we do not tune the initial conditions onto the exact breather solution,
i.e. if the vibrational contributions from the peripheral particles are not equal to zero, we will obtain a
certain quasibreather [28]. This spatially localized dynamical object is characterized by different
frequencies appearing from the peripheral particles. The difference in frequencies is brought about by the
phenomenon typical for nonlinear dynamics, namely, by the dependence of the frequency on the vibrational
amplitude.

In Ref. [28], we proposed to characterize the proximity of the quasibreather to an exact time-periodic
breather with the aid of the mean square deviations in frequencies of the individual particles and that of the
fixed particle in time (there exist a certain temporal drift of the frequency of every chosen particle). We also
presented there some arguments (at least, for the case of the K4 chain) for the possibility of the quasibreather
stability despite of the absence of the time periodicity. However, we cannot present any refined mathematical
proof on quasibreather stability for infinite time.

On the other hand, one often reveals that the lifetime of a quasibreather, if it actually decays in
time, can be exponentially large for small deviations from the exact breather. For example, in Fig. 10,
we depict the time evolution of the quasibreather in the weakly coupled Duffing chain which lives, at least,
up to t�106.

Finally, since we cannot tune exactly on the strictly time periodic breather solution in any physical
experiment (and even in numerical experiments), quasibreathers seem to be much more relevant spatially
localized dynamical objects than the exact DBs. Some additional details for this point of view can be found in
Ref. [28].
Fig. 10. An extremely long-lived quasibreather for the Duffing chain (1) with N ¼ 5 particles which, possibly, is a stable dynamical object

[g ¼ 0:3, a1 ¼ 2, a2 ¼ �0:5760, a3 ¼ 0:1].



ARTICLE IN PRESS

Fig. 11. Two-frequency symmetric breather in the Duffing chain (1) for b ¼ 0:3, a1 ¼ 7, N ¼ 5.

Fig. 12. Single-frequency symmetric breather in the Duffing chain (1) for b ¼ 0:3, a1 ¼ 7, N ¼ 5. Vibrations of the third particle is not

visible, because of its small amplitude.
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4. Many-frequency DBs

Now we consider the many-frequency breathers which were mentioned in the Introduction. Let us
remember that we use this term for such spatially localized dynamical objects whose particles vibrate with
several different but commensurate frequencies. This means that many-frequency breather proves to be a
time-periodic object whose period T is the largest of the multiple periods T1;T2; . . . ;TN of all the particles of
the chain.

4.1. The chain of Duffing oscillators with linear coupling

Several many-frequency DBs for this model have already been found in Ref. [31]. Below we consider some
of them as well as a number of additional examples, in particular, the many-frequency symmetric breather.



ARTICLE IN PRESS

Fig. 13. Two-frequency symmetric breather in the Duffing chain (1) for b ¼ 0:3, a1 ¼ 19, N ¼ 5 (o1 ¼ 3o2 ¼ 3o3). This breather is

unstable.

Fig. 14. Three-frequency symmetric breather in the Duffing chain (1) for b ¼ 0:3, a1 ¼ 28, N ¼ 5 (o1 ¼ 2o2 ¼ 4o3). This breather is

unstable.
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In Fig. 11, we depict a two-frequency symmetric breather (o1 ¼ 2o2 ¼ 2o3) in the chain (1) with N ¼ 5
particles for b ¼ 0:3. Indeed, the first particle ½x1ðtÞ� vibrates with the frequency twice larger than those of all
the other particles ½x2ðtÞ; x3ðtÞ�. This breather with ob ¼ o2ð¼ o3Þ ¼ 1:39615 corresponds to the following
data: b ¼ 0:3, a1 ¼ 7, a2 ¼ �1:064224, a3 ¼ 0:352247. Hereafter, we do not point out explicitly that all the
initial displacements are zero: xið0Þ ¼ 0, i ¼ 1::N.

Note that for the same b and a1, we can also find a single-frequency symmetric breather with
o1 ¼ o2 ¼ o3 ¼ 2:77828 (see Fig. 12 which was obtained for b ¼ 0:3, a1 ¼ 7, a2 ¼ �0:379206,
a3 ¼ 0:017876, N ¼ 5).

In Fig. 13, we depict the two-frequency symmetric breather with ob ¼ o2 ¼ 1:48666 whose particles vibrate
with the following frequencies: o1 ¼ 3o2 ¼ 3o3. This breather corresponds to the following initial data:
a1 ¼ 19, a2 ¼ �1:593445, a3 ¼ 0:456080 (N ¼ 5, b ¼ 0:3).
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In Fig. 14, the three-frequency symmetric breather with o1 ¼ 2o2, o2 ¼ 2o3 is shown. It corresponds to the
following initial data: a1 ¼ 28, a2 ¼ �7:018426, a3 ¼ 1:472607 (N ¼ 5, b ¼ 0:3). The breather frequency is
ob ¼ o3 ¼ 1:35108.

In Fig. 15, we depict the antisymmetric breather in the chain (1) with N ¼ 6 particles for b ¼ 0:3. The
relation between the vibration frequencies of the individual particles reads o1 ¼ 2o2 ¼ 2o3, while the breather
frequency is ob ¼ o2 ¼ 1:653176. The initial velocity profile for this breather is a1 ¼ 10, a2 ¼ �2:199936,
a3 ¼ 0:947441 (N ¼ 5, b ¼ 0:3).
Fig. 15. Two-frequency antisymmetric breather in the Duffing chain (1) for b ¼ 0:3, a1 ¼ 10, N ¼ 5 (o1 ¼ 2o2 ¼ 2o3).

Fig. 16. Three-frequency symmetric breather in the K4 chain (3) for b ¼ 0:01, a1 ¼ 10, N ¼ 5.
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Note that the pair synchronization method providing us with an initial breather profile does not guarantee
the breather stability. For example, the breathers depicted in Figs. 13 and 14 prove to be unstable dynamical
objects, and this fact can be checked by straightforward integration of the dynamical equation (1), as well as
with the aid of the Floquet method.

Note that, for simplicity, in many examples of this section we consider only chains with small numbers of
particles (N). This is not an essential restriction because, in every such case, the synchronization procedure can
be easily continued for much greater values of N.

Let us emphasize that, unlike the terminology of the paper [26], our many-frequency breathers are time-

periodic dynamical objects, but different particles vibrate with different (divisible) frequencies oi (i ¼ 1::N).
We would like to note that one can find in Ref. [1] a certain mention of multibreathers whose particles vibrate
with different but commensurate frequencies. However, we do not know any papers with detailed analysis of
such dynamical objects and it seems that our many-frequency breathers are not fully identical to the above
mentioned multibreathers.

4.2. The K4 chain

Using the pair synchronization method, we can construct many-frequency breathers for different nonlinear
Hamiltonian lattices, in particular, for the chains (2) and (3). These chains represent a certain interest for our
discussion because they admit the existence of nonlinear normal modes which correspond only to single-
frequency breathers. Let us consider this question in more details.

In Fig. 16 we depict the many-frequency breather for the K4 chain with N ¼ 5 and b ¼ 0:01. The initial
velocity profile for this DB is [a1 ¼ 10, a2 ¼ �2:738135, a3 ¼ 0:308056]. It can be seen from Fig. 16 that
o1 ¼ 2o2 ¼ 6o3 (o3 ¼ 0:53882).

Unlike the single-frequency breathers representing nonlinear normal modes, the many-frequency breathers
in the K4 chain are not the modes of this type. Indeed, one can see from Fig. 16 that for certain instant t,
x1ðtÞ ¼ 0, while x2ðtÞ and x3ðtÞ are not zero. Therefore, the main property of the nonlinear normal modes,
i.e. xiðtÞ ¼ kix1ðtÞ, ki ¼ const, is not valid for the many-frequency breathers. This idea is also illustrated
by Fig. 17 where we depict the time-evolution of the ratio x2ðtÞ=x1ðtÞ.

With the aid of the pair synchronization method, we can also construct the many-frequency breathers for
the chain of the Duffing oscillators with cubic coupling (2).
Fig. 17. The time evolution of the ratio x2ðtÞ=x1ðtÞ for the three-frequency symmetric breather in the K4 chain depicted in Fig. 16.
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5. Conclusions

For the chain with uniform on-site and intersite potential of the fourth order (K4 chain (3)), we have
constructed some DBs, in terms of nonlinear normal modes and analyzed their stability with respect to the
strength of the interparticle interaction (coefficient b from Eq. (3)). It turns out that symmetric breather
(Sievers–Takeno mode) and antisymmetric breather (Page mode) change their stability properties at the same
critical point bc ¼ 0:554 . . . : Namely, the symmetric breather, being stable for bobc, becomes unstable for
b4bc, while the antisymmetric breather being unstable for bobc, becomes stable for b4bc. On the other
hand, the simple symmetric multibreather (10) is more sensitive to increasing the interparticle interaction:
already it loses the stability for b � 0:206.

In the K4 chain, the stability of the DBs is independent of their amplitudes and depends only on b. The
breathers in the chain of the Duffing oscillators with cubic coupling (2) also represent localized nonlinear
normal modes, but their stability, unlike the case of the K4 chain, depends on their amplitudes and the
strength of the interparticle interaction (b).

Note that a part of the above mentioned results was presented in our previous papers [28,31]. In contrast to
the discussed models (2) and (3), localized nonlinear normal modes do not exist in the chain of the linear
coupled Duffing oscillators (1) and we have to search for DBs for this case in different manner.

In Refs. [31,32] the pair synchronization method have been proposed for constructing DBs in arbitrary
nonlinear Hamiltonian lattices. In the present paper, we use this method to obtain DBs of different types when
their construction is impossible in terms of nonlinear normal modes.

In this way, we have constructed single-frequency DBs, as well as a number of many-frequency breathers in
the chain of the linear coupled Duffing oscillators. Unlike the conventional (single-frequency) breather, in
many-frequency DBs, different chain particles vibrate with different but commensurate frequencies. We have
already noted in the introduction that we are not aware of any detail investigation of these dynamical objects,
although some references to the possibility of their existence can be found in the literature in connection with
discussions of the multibreathers (see, for example, Ref. [1]).

We have demonstrated that many-frequency breathers are not nonlinear normal modes even in the cases
where localized nonlinear normal modes of such type do exist (they represent only single-frequency DBs).

Finally, we have discussed some aspects of quasibreathers which were introduced in Ref. [28] as
generalization of the concept of DBs. Such spatially localized dynamical objects are not strictly time-periodic
entities: different particles of the chain vibrate with slightly different frequencies and these frequencies slightly
drift in time. Quasibreathers seem to be more adequate dynamical objects than the strictly time-periodic DBs
since it is impossible to tune exactly onto the latter in any physical experiments.
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